多项式乘法逆

我们要求$\mathrm{G}(\mathrm{x})$,使得

又因为

所以

两边同时乘以$\mathrm{F}(\mathrm{x})$,则有

多项式对数函数

多项式开根

多项式指数函数

假设已知一个函数$G(x)$,求一个多项式$F(x) \bmod x^{n}$,满足方程

回忆一下多项式求逆的过程
首先$n=1$的时候,$G(F(x)) \equiv 0(\bmod x)$,这是要单独求出来的
现在假设已经求出了

考虑如何扩展到$\bmod x^{n}$下,可以把$G(F(x))$在$F_{0}(x)$这里进行泰勒展开

所以

然后因为$G(F(x)) \equiv 0\left(\bmod x^{n}\right)$,可以得到

现在我们要求

等价于

所以有

多项式幂函数

完整多项式模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#include <bits/stdc++.h>
using namespace std;

const int G = 3;
const int B = 19;
const int N = (1 << B) | 1;
const int IG = 332748118;
const int MOD = 998244353;
typedef long long ll;

inline int add(int a, int b) {
return (a + b >= MOD) ? (a + b - MOD) : (a + b);
}
inline int dec(int a, int b) { return (a - b >= 0) ? (a - b) : (a - b + MOD); }
inline int mul(ll a, int b) { return a * b - a * b / MOD * MOD; }
inline int qpow(int x, ll y) {
int res = 1;
for (; y; y >>= 1, x = mul(x, x))
if (y & 1) res = mul(res, x);
return res;
}

struct Node {
double x, y;
Node() {}
Node(const double &_x, const double &_y) : x(_x), y(_y) {}
Node operator+(const Node &t) { return Node(x + t.x, y + t.y); }
Node operator-(const Node &t) { return Node(x - t.x, y - t.y); }
Node operator*(const Node &t) {
return Node(x * t.x - y * t.y, x * t.y + y * t.x);
}
Node operator*(const double &k) { return Node(x * k, y * k); }
Node operator~() { return Node(x, -y); }
void MTTinit(int t) {
x = t >> 15;
y = t & 32767;
}
};

class MathMod {
public:
int inv(int t) { return qpow(t, MOD - 2); }
};

class Poly : protected MathMod {
public:
Poly() {
for (level = 1; level < B; ++level) {
limit = 1 << level, rev = REV[level];
for (int i = 0; i < limit; ++i)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? (limit >> 1) : 0);
}
}

private:
int tmp_a[N], tmp_b[N], tmp_c[N], tmp_d[N];

protected:
int limit, level;
int *rev, REV[B][N];

void InitLimit(const int need_len) {
for (limit = 1, level = 0; limit <= need_len; limit <<= 1) ++level;
rev = REV[level];
InitLimitExtra();
}

virtual void InitLimitExtra() = 0;
virtual void Transform() = 0;

public:
virtual void Mul(const int len_a, const int *a, const int len_b,
const int *b, int *c) = 0;

void Inv(const int len, const int *a, int *b) {
if (!len) {
b[0] = inv(a[0]);
return;
}
Inv(len >> 1, a, b);
Mul(len, b, len, b, tmp_a);
Mul(len, tmp_a, len, a, tmp_a);

for (int i = 0; i <= len; ++i)
b[i] = add(add(b[i], b[i]), MOD - tmp_a[i]);

for (int i = len + 1; i < limit; ++i) b[i] = 0;
for (int i = 0; i < limit; ++i) tmp_a[i] = 0;
}

void Deriv(const int len, const int *a, int *b) {
for (int i = 0; i < len; ++i) b[i] = mul(a[i + 1], i + 1);
b[len] = 0;
}

void Integral(const int len, const int *a, int *b) {
for (int i = len; i > 0; --i) b[i] = mul(a[i - 1], inv(i));
b[0] = 0;
}

void Ln(const int len, const int *a, int *b) {
Deriv(len, a, b);
Inv(len, a, tmp_b);
Mul(len, b, len, tmp_b, tmp_b);
Integral(len, tmp_b, b);

for (int i = len + 1; i < limit; ++i) b[i] = 0;
for (int i = 0; i < limit; ++i) tmp_b[i] = 0;
}

void Exp(const int len, const int *a, int *b) {
if (!len) {
b[0] = 1;
return;
}
Exp(len >> 1, a, b);
Ln(len, b, tmp_c);
for (int i = 0; i <= len; ++i) tmp_c[i] = add(MOD - tmp_c[i], a[i]);
++tmp_c[0];
Mul(len, tmp_c, len, b, b);

for (int i = len + 1; i < limit; ++i) b[i] = 0;
for (int i = 0; i < limit; ++i) tmp_c[i] = 0;
}

void Sqrt(const int len, const int *a, int *b) {
static int inv2 = inv(2);
if (!len) {
b[0] = 1;
return;
}
Sqrt(len >> 1, a, b);
Inv(len, b, tmp_b);
Mul(len, a, len, tmp_b, tmp_b);
for (int i = 0; i <= len; ++i) b[i] = mul(add(tmp_b[i], b[i]), inv2);

for (int i = len + 1; i < limit; ++i) b[i] = 0;
for (int i = 0; i < limit; ++i) tmp_b[i] = 0;
}

void Power(const int len, const int *a, const char *s, int *b) {
int Len = strlen(s);
int val1 = 0, val2 = 0, val3 = 0;
for (int i = 0; i < Len; ++i) {
val1 = (10LL * val1 + s[i] - '0') % MOD;
val2 = (10LL * val2 + s[i] - '0') % (MOD - 1);
}
for (int i = 0; i < min(6, Len); ++i) val3 = 10 * val3 + s[i] - '0';
if (a[0] == 0 && val3 > len) {
fill(b, b + len + 1, 0);
return;
}

int u, v, shift = 0;
for (int i = 0; i <= len && a[i] == 0; ++i) shift++;
if ((ll)shift * val1 > len) {
fill(b, b + len + 1, 0);
return;
}
u = qpow(a[shift], MOD - 2);
v = qpow(a[shift], val2);
for (int i = 0; i <= len; ++i) b[i] = mul(a[i + shift], u);
Ln(len, b, tmp_d);
b[0] = tmp_d[0];
for (int i = 1; i <= len; ++i) b[i] = mul(tmp_d[i], val1);
Exp(len, b, tmp_d);
shift *= val1;
for (int i = 0; i < shift; ++i) b[i] = 0;
for (int i = shift; i <= len; ++i) b[i] = mul(tmp_d[i - shift], v);
for (int i = 0; i < limit; ++i) tmp_d[i] = 0;
for (int i = len + 1; i < limit; ++i) b[i] = 0;
}
};

class FFT : public Poly {
public:
FFT() {
const double Pi = acos(-1.0);
for (level = 1; level < B; ++level) {
limit = 1 << level, w = W[level];
for (int mid = 1; mid < limit; mid <<= 1) {
w[mid] = Node(1, 0);
for (int i = 1; i < mid; ++i) {
if ((i & 31) == 1)
w[mid + i] = Node(cos(Pi * i / mid), sin(Pi * i / mid));
else
w[mid + i] = w[mid + i - 1] * w[mid + 1];
}
}
}
}

private:
Node tmp_a[N], tmp_b[N], tmp_c[N], tmp_d[N];

protected:
Node *w, W[B][N];

void InitLimitExtra() { w = W[level]; }
void Transform() {}
void Transform(Node *val, int type) {
if (type == 1) reverse(val + 1, val + limit);
for (int i = 0; i < limit; ++i)
if (i < rev[i]) swap(val[i], val[rev[i]]);
for (int mid = 1; mid < limit; mid <<= 1) {
int R = mid << 1;
for (int i = 0; i < limit; i += R)
for (int j = 0; j < mid; ++j) {
Node v = w[mid + j] * val[i + mid + j];
val[i + mid + j] = val[i + j] - v;
val[i + j] = val[i + j] + v;
}
}
}

public:
void Mul(const int len_a, const int *a, const int len_b, const int *b,
int *c) {
InitLimit(len_a + len_b);
for (int i = 0; i <= len_a; ++i) tmp_a[i].MTTinit(a[i]);
for (int i = 0; i <= len_b; ++i) tmp_b[i].MTTinit(b[i]);
Transform(tmp_a, 1), Transform(tmp_b, 1);
for (int i = 0; i < limit; ++i) {
Node ft = ~tmp_a[i ? (limit - i) : 0];
Node f0 = (tmp_a[i] - ft) * Node(0, -0.5);
Node f1 = (tmp_a[i] + ft) * 0.5;
Node gt = ~tmp_b[i ? (limit - i) : 0];
Node g0 = (tmp_b[i] - gt) * Node(0, -0.5);
Node g1 = (tmp_b[i] + gt) * 0.5;
tmp_c[i] = f1 * g1,
tmp_d[i] = f0 * g1 + f1 * g0 + f0 * g0 * Node(0, 1);
}
Transform(tmp_c, -1), Transform(tmp_d, -1);
for (int i = 0; i <= len_a + len_b; ++i) {
ll v1 = (ll)(tmp_c[i].x / limit + 0.5) % MOD;
ll v2 = (ll)(tmp_d[i].x / limit + 0.5) % MOD;
ll v3 = (ll)(tmp_d[i].y / limit + 0.5) % MOD;
c[i] = ((v1 << 30) + (v2 << 15) + v3) % MOD;
}

for (int i = 0; i < limit; ++i)
tmp_a[i] = tmp_b[i] = tmp_c[i] = tmp_d[i] = Node(0, 0);
}
};

class NTT : public Poly {
private:
int tmp_a[N], tmp_b[N];

public:
void Mul(const int len_a, const int *a, const int len_b, const int *b,
int *c) {
InitLimit(len_a + len_b);
for (int i = 0; i <= len_a; ++i) tmp_a[i] = a[i];
for (int i = 0; i <= len_b; ++i) tmp_b[i] = b[i];
Transform(tmp_a, 1), Transform(tmp_b, 1);
for (int i = 0; i < limit; ++i) c[i] = mul(tmp_a[i], tmp_b[i]);
Transform(c, -1);
int INV = inv(limit);
for (int i = 0; i <= len_a + len_b; ++i) c[i] = mul(c[i], INV);
for (int i = len_a + len_b + 1; i < limit; ++i) c[i] = 0;
for (int i = 0; i < limit; ++i) tmp_a[i] = tmp_b[i] = 0;
}

protected:
void InitLimitExtra() {}
void Transform() {}
void Transform(int *val, int type) {
for (int i = 0; i < limit; ++i)
if (i < rev[i]) swap(val[i], val[rev[i]]);
for (int mid = 1; mid < limit; mid <<= 1) {
int wn = qpow(type == 1 ? G : IG, (MOD - 1) / (mid << 1));
for (int j = 0; j < limit; j += (mid << 1)) {
int w = 1;
for (int k = 0; k < mid; k++, w = mul(w, wn)) {
int x = val[j + k], y = mul(w, val[j + k + mid]);
val[j + k] = add(x, y);
val[j + k + mid] = dec(x, y);
}
}
}
}
};